
BLARE : E X P L O I T I N G

S T R U C T U R E I N R E G U L A R

E X P R E S S I O N Q U E R I E S

UW-Madison: Ling Zhang, J ignesh M. Patel

MS GSL: Shaleen Deep, Avrilia Floratou,
Anja Gruenheid, Yiwen Zhu

Higher-level language (e.g., Python)

I N T R O D U C T I O N

• Analyzing large volume of log data is crucial for large-scale system management

① Security, ② Customer Support,③ Understanding system usage

• Log analysis extract structured information from, schema-less, semi-structured logs

o Unsuitable for relational DBMS

o Done in ad-hoc data science approach

I N T R O D U C T I O N

• Identify the frequency and pattern of VMs' redeployment due to resizing
within clusters in US-East-X region.

o Obtain the relevant logs

o Inspect sample logs to construct appropriate regular expression (regex)

replacing VM (VmId=([a-z0-9\-]+), VmName=us-east-X-([a-z0-9]+)-vm

o Extract the VM IDs using the regex

o Deeper analysis of the specific VMs

Alice

P R I O R W O R K S

• State-of-art regex evaluation under the hood

• Existing state-of-art regex libraries in several analytics and RDBMSs

o Google’s RE2 is used in spam filtering, Google Sheets, MS Azure Data Explorer, etc.

o PCRE2 is widely used in intrusion detection, packet filtering, and spam filtering

o MySQL uses ICU Regex for Unicode regex support

o C++ version Lucene and C++ standard library uses Boost Regex

R E G E X E V A L B A S I C S

• NFA

o Each character requires O(m) memory lookups, where m = # states in automata

• DFA

o Special case of NFA when input can transit to only one state

o O(1) lookup per character, but larger state graph compared to NFA

• Existing Optimization Example

o Prefiltering some irrelevant inputs Read on \"(.+)\" failed: (.+)

Prefix literal

OBSERVATION:

Regex engines use DFAs/NFAs and need to do bookkeeping.

Expensive even for the simplest task of string matching.

R E G E X C H A R A C T E R I S T I C S

• 14.5 million public notebooks on GitHub authored between 2017-2020

o 35% out of 200, 000 unique regexes contain at least 1 literal

• Our collected workloads

SQL Server Azure Data Explorer US-Accident

literal per regex
mean 3.2 1.4 1.8

median 3 1 2

Mean # char in literal 39.9 12.2 5.1

OBSERVATION:

Most regexes contain literal components;

Regexes used in log analysis contain long literals and simple regex components.

I N S I G H T

• Move string matching related computation outside regex engine

Gap between evaluating string matching using a regex library vs string matching in
code is ~3x

B L A R E : O U R C O N T R I B U T I O N S
A F R A M E W O R K F O R R E G E X E V A L U A T I O N

Framework Design

• Implemented as a module on top of a regex engine that
is used as a “blackbox”

o (R1) engine-agnostic

o (R3) no prior statistics needed

o (R4) no specialized SW & HW dependence

• BLARE uses lightweight mechanisms to identify whether
our new evaluation strategy is better than running the
entire regex as-is on the regex engine

o (R2) no large regressions

Framework Performance

• We implement BLARE on 4 regex engines (RE2, PCRE2,
ICU Regex, Boost Regex)

o 1.6x to 168x improvement over two production workloads
and an open-source workload

Alice

BLARE

RE2 PCRE2 …...

?

...

Faster
Response

R E G E X D E C O M P O S I T I O N

• Split regex R to (prefix S suffix) where prefix and suffix are strings of literals

• R = replacing VM (VmId=([a-z0-9\-]+), VmName=us-east-X-([a-z0-9]+)-vm

 Prefix Regex Suffix

• We call 3-way-split of the regex

X-way-split: split a regex to a maximum of X literal-regex alternating components

• Recursively continue decomposing the regex gives us the multi-way-split.

• R = replacing VM (VmId=([a-z0-9\-]+), VmName=us-east-X-([a-z0-9]+)-vm

 Literal0 Regex0 Literal1 Regex1 Literal2

W H AT S P L I T T I N G S T R AT E G Y I S B E S T ?

• Cost Model (k: number of literals)

1. The more we decompose a regex, the higher the string-matching cost

2. The lower the selectivity's of the string literals, the lesser the advantage of
doing regex decomposition + higher the substring extraction cost

3. If string literals are selective, we often get to ignore the log line at early
stage

OBSERVATION: k=2 (3-Way-Split) is most beneficial in majority of the time.

W H AT S P L I T T I N G S T R AT E G Y I S B E S T ?

• Experimental Verification

NOTE: regex-specific best strategy may still vary depending on engine & selectivity.

B L A R E A R C H I T E C T U R E

• Splitter

o Construct different regex
decompositions of interest

• Learner

o Use a learning component to identify
which split is likely to give the best
performance.

• Split-Matcher

o Execute the best strategy identified
for the regex

L E A R N I N G

• Learn to choose strategy on the f ly. No prior statistics needed

• Multi-Armed Bandit (MAB)

o 3 arms: 3-Way-Split, Multi-Way-Split, Direct

o Thompson Sampling addressing the exploration-exploitation dilemma

o Ensemble Method dealing with noisy measured data

Thompson Sampling

Per Log Execution Time

Update Beta Distributions

For Each
Sampled
Log

L E A R N I N G

• Learn to choose strategy on the f ly. No prior statistics needed

• Multi-Armed Bandit (MAB)

o 3 arms: 3-Way-Split, Multi-Way-Split, Direct

o Thompson Sampling addressing the exploration-exploitation dilemma

o Ensemble Method dealing with noisy measured data

Majority Vote

… … (10 sub-samples) … …

D E S I G N C O N S I D E R AT I O N S

Extensibility & Simplicity

• Implement BLARE as a layer on top, calling underlying regex engine

• Easy to adopt, benefit from advancement of underlying engine

• Easily extended by adding arm(s)

• Small codebase (<1000 LOC) aids explainability

Minimize Learning Overhead

• Since learning is an overhead (proportional in the number of strategies), we
deliberately keep the number of modes in BLARE to be small.

• Early stopping in MAB

• Thresholding number of log fed to learner

Prefix and Suffix Sizes

• Since selectivity is most important, and it is not directly connected to the length of
the literal, we do not discard short prefix/suffix

E X P E R I M E N TA L E V A L U AT I O N

Experiment Setup

• We use 4 SOTA regex libraries: RE2, PCRE2, Boost Regex, and ICU Regex.

• All experiments on a machine running Intel Xeon@2.8GHz, 256 GB RAM.

• Sample size for learning is max {0.001% of the log, 200 lines}

Query Result Reporting

• Regex matching is performed 10 times and we record the trimmed mean.

• We store the extracted content of the first match result in a local variable.

Workloads

• 132 regexes used for SQL Server log analysis over 100M+ log lines

• 18 regexes used for log analysis over 890M+ log lines sourced from Kusto

• Open-source datasets on traffic accident in US with 2.8M+ log lines and 4 relevant
regex

E X P E R I M E N TA L E V A L U AT I O N
- O V E R A L L P E R F O R M A N C E

• Speedup obtained from BLARE w.r.t. running the workload on the underlying
engine

• Nearly every query experienced a performance improvement across all the
engines

• For queries that did not, the gap to the best strategy was < 2%

SQL Server​ Azure Data Explorer US-Accident​

Google RE2​ 3.7x​ 3.3x​ 1.6x​

PCRE2​ 3.2x​ 3.1x​ 168.3x​

ICU Regex​ 1.6x -- 61.7x​

Boost Regex​ 7.9x​ 4.9x​ 3.4x​

E X P E R I M E N TA L E V A L U AT I O N
- L E A R N I N G O V E R H E A D

• Mean % of time spent in learning in BLARE

• Note: US-Accident is consistently higher because the log size is small, lower
threshold number of logs for learning takes a larger proportion compared to other
workloads

• The cost of learning is justified by the overall gains made by BLARE

SQL Server​ Azure Data Explorer US-Accident​

BLARE-RE2​ 5.1%​ 6.7%​ 16.5%​

BLARE-PCRE2​ 9.1%​ -- 23.8%​

BLARE-ICU Regex​ -- 8.1%​ 28.1%​

BLARE-Boost Regex​ 10.7%​ 6.1%​ 27.4%​

E X P E R I M E N TA L E V A L U AT I O N
- S P L I T T I N G S T R A T E G I E S

• Overall performance and distribution of per-regex running time for BLARE vs.
3-Way-Split vs. Multi-Way-Split

• Using Google-RE2 on SQL Server

E X P E R I M E N TA L E V A L U AT I O N
- S P L I T T I N G S T R A T E G I E S

• Overall performance and distribution of per-regex running time for BLARE vs.
3-Way-Split vs. Multi-Way-Split

• Using Google-RE2 on SQL Server

E X P E R I M E N TA L E V A L U AT I O N
- O T H E R Q U E R I E S

• Overall performance in terms of workload running time in seconds for 3 types
of queries.

• Using Google-RE2 on SQL Server

Running Time (s)

FirstMatch CountAllMatches LongestMatch

Google RE2​ 1105.7 1148.7 1128.5

BLARE - RE2 301.0 299.8 306.1

Improvement 3.67x 3.83x 3.68x​

E X P E R I M E N TA L E V A L U AT I O N
- E X T E N S I B I L I T Y

• Add an additional Reversed 3-Way-Split
arm

o Instead of doing string containment checks
left to right, we can also add another
strategy that does right to left

• Overall performance and distribution of
per-regex running time for BLARE vs. 3-
Way-Split vs. Multi-Way-Split vs. Reversed
3-Way-Split

• Using Google-RE2 on SqlServer

E X P E R I M E N TA L E V A L U AT I O N
- E X T E N S I B I L I T Y

• Add an additional Reversed 3-Way-Split arm

o Instead of doing string containment checks left to right, we can also add another
strategy that does right to left

• Overall performance and distribution of per-regex running time for BLARE vs.
3-Way-Split vs. Multi-Way-Split vs. Reversed 3-Way-Split

• Using Google-RE2 on SQL Server

C O N C L U S I O N

• We presented BLARE, a framework for
faster regex evaluation for large volume
log analysis.

• BLARE is engine-agnostic, does not make
any assumptions on the hardware,
statistics, etc.

• Experimental evaluation demonstrates
speedups ranging from 1.6x to 168x over
real-world datasets and workloads.

• Code: github.com/mush-zhang/Blare

• Future work:

o Incorporate indexing, light-weight statistics
collection, add more evaluation operators
and build a regex query optimizer.

https://github.com/mush-zhang/Blare

B L A R E A R C HI T E CT UR E B L A R E P R O PE R T IE S

S U M M A R Y

(R.1) BLARE is engine-
agnostic

?

(R.2) BLARE is extensible with
no long-term dependency on
specialized hardware or
software.

(R.3) BLARE introduces
no large regressions for
any specific query in the
workload

(R.4) BLARE requires no prior
statistics or catalogs about the
workloads

	Slide 1: BLARE:EXPLOITING STRUCTURE IN REGULAR EXPRESSION QUERIES
	Slide 2: Introduction
	Slide 3: Introduction
	Slide 4: Prior Works
	Slide 5: Regex eval BasiCs
	Slide 6: Regex characteristics
	Slide 7: Insight
	Slide 9: BLARE: Our Contributions A framework for regex evaluation
	Slide 10: Regex Decomposition
	Slide 11: What Splitting Strategy is Best?
	Slide 12: What Splitting Strategy is Best?
	Slide 13: BLARE Architecture
	Slide 14: Learning
	Slide 15: Learning
	Slide 16: Design Considerations
	Slide 17: Experimental Evaluation
	Slide 18: Experimental Evaluation - Overall performance
	Slide 19: EXPERIMENTAL EVALUATION - Learning Overhead
	Slide 20: EXPERIMENTAL EVALUATION - Splitting Strategies
	Slide 21: EXPERIMENTAL EVALUATION - Splitting Strategies
	Slide 22: EXPERIMENTAL EVALUATION - Other queries
	Slide 23: EXPERIMENTAL EVALUATION - extensibility
	Slide 24: EXPERIMENTAL EVALUATION - extensibility
	Slide 25: Conclusion
	Slide 26: Summary

