BLARE: :cxrioiTinG

STRUCTURE IN REGULAR
EXPRESSION QUERIES

UW-Madison: Ling Zhang, Jignesh M. Patel

MS GSL: Shaleen Deep, Avrilia Floratou,
Anja Gruenheid, Yiwen Zhu

INTRODUCTION

- Analyzing large volume of log data is crucial for large-scale system management

(1) Security, (2) Customer Support, (3) Understanding system usage

- Log analysis extract structured information from, schema-less, semi-structured logs
o Unsuitable for relational DBMS
o Done in ad-hoc data science approach

= g Zb <>,

Higher-level language (e.g., Python)

INTRODUCTION

. ldentify the frequency and pattern of VMs'redeployment due to resizing
within clustersin US-East-Xregion.

o Obtain the relevantlogs

o Inspect samplelogs to construct appropriateregular expression (regex)
replacing VM (VmId=([a-z0-9\-]+), VmName=us-east-X-([a-z0-9]+)-vm

o Extractthe VM IDs using the regex

o Deeper analysis of the specific VMs

B &\ 8

Alice

PRIOR WORKS

. State-of-artregex evaluation under the hood

- Existingstate-of-artregexlibraries in several analyticsand RDBMSs
o Google's RE2 isused in spam filtering, Google Sheets, MS Azure Data Explorer, etc.

M 74

PostgreSQL
o PCRE2 iswidely used in intrusion detection, packet filtering, and spam filtering
o MySQL uses ICU Regex for Unicode regex support
o C++version Lucene and C++ standard library uses Boost Regexm

S uecrnez MysoL

Google Sheets

REGEX EVAL BASICS

- NFA
o Each characterrequires O(m) memory lookups, where m = # statesin automata

- DFA
o Special case of NFA when input can transit to only one state
o O(1)lookup per character, but larger state graph compared to NFA

+ Existing Optimization Example Prefixliteral
o Prefiltering some irrelevantinputs Read on \"(.+)\" failed: (.+)

OBSERVATION:

Regex engines use DFAsS/NFAs and need to do bookkeeping.
Expensive even for the simplest task of string matching.

REGEX CHARACTERISTICS

- 14.5 million publicnotebooks on GitHub authored between 2017-2020
o 35% out of 200,000 unique regexescontain at least 1 literal

. Our collectedworkloads

SQL Server | AzureData Explorer US-Accident
mean 3.2 1.4 1.8
literal per regex
median 3 T 2
Mean # char in literal 39.9 12.2 5.1
OBSERVATION:

Most regexes contain literal components;
Regexes usedin log analysis contain long literals and simple regex components.

INSIGHT

- Move string matching related computation outside regex engine

Gap between evaluating string matching using a regex library vs string matching in

code is ~3X
1 C++ std::string::find RE2 PartialMatch e PCRE2 Match

100

(0]
o

(o))
o

e
o

Running Time (s)

M
o

A111)

strO strl str2 str3 str4 str5 stré str7 str8 str9
Literal Components in Regexes

BLARE: OUR CONTRIBUTIONS
A FRAMEWORK FOR REGEX EVALUATION

Framework Design

- Implementedas a module on top of a regex engine that Alice(@\)
is used as a “blackbox” <))

o (RT)engine-agnostic
. - _ Faster
o (R3) no prior statistics needed =
. = Response
o (R4) no specialized SW & HW dependence

- BLARE uses lightweight mechanismsto identify whether >
our new evaluation strategy is better than running the { BLARE]
entire regex as-is on the regex engine

o (R2)no large regressions l

Framework Performance .
- We implement BLARE on 4 regex engines (RE2, PCREZ, /
|CU Regex, Boost Regex) S B T

o 1.6x to 168x improvementover two productionworkloads RE2 ' PCRE2 | ...
and an open-sourceworkload R

REGEX DECOMPOSITION

- Splitregex R to (prefix S suffix) where prefix and suffix are strings of literals

- R :lr‘eplacing VM (VmId4([a-z0-9\-]+), VmName=us—east—X—([a—z@—9]+]—vﬂ
Prefix Regex Suffix

- We call 3-way-split of the regex
X-way-split: split a regexto a maximum of X literal-regex alternating components

- Recursively continue decomposing the regex gives us the multi-way-split.

. Rer‘eplacing VM (VmId4([a-z0-9\-]+), VmName=us-east-X—([a—z@—9]+]—vﬁ
LiteralO Regex0 Literal Regex1 Literal2

WHAT SPLITTING STRATEGY |IS BEST?

. CostModel (k: number of literals)

k i-1 i k-1 k-1
SMCost(r,k)=|f|+Zf-(c-(l—Ji)-I—IJj+i-I—I0'j-Isize)+ z-g-Z|f;| +@(r)-Z|f;|-a
i=1 j=1 j=1 i=1 i=1

—
part one part two substring extraction cost running on engine

string matching cost total regex evaluation cost

1. The more we decompose a regex, the higher the string-matching cost

2. Thelower the selectivity's of the string literals, the lesser the advantage of
doing regex decomposition + higher the substring extraction cost

3. If stringliterals are selective, we often get to ignore the log line at early
Stage

OBSERVATION: k=2 (3-Way-Split) is most beneficialin majority of the time.

WHAT SPLITTING STRATEGY |IS BEST?

- Experimental Verification

Regexes Run Time (s)

k=1 k=2 k=4 k=6 k>6
A 2.03 1.99 2.27 2.21 2.22
B 2.03 1.99 2.27 2.21 2.22
C 2.10 2.04 2.30 2.24 2.25
D 2.00 1.94 2.22 2.16 2.20
E 1.84 1.80 2.05 2.00 2.00
F 2.09 2.03 2.32 2.24 2.26
G 2.08 2.02 2.31 2.24 2.26
H 2.40 1.99 2.18 2.08 1.99

NOTE: regex-specific best strategy may still vary depending on engine & selectivity.

BLARE ARCHITECTURE

. Splitter

o Construct different regex Regexr LoglL Output r(L)

decompositions of interest @

- Learner —

. . . mode
o Usea Iea.m'mg. component to identify Splitter [~ S(DS — Leamer (erplit-Matcher..
which splitis likely to give the best Seeh regex split

performance.

4

BLARE

. Split-Matcher G ®

o Execute the best strategyidentified "
for the regex Underlying Regex Engine

LEARNING

- Learnto choosestrategyon thefly. No prior statistics needed

- Multi-Armed Bandit (MAB)
o 3 arms: 3-Way-Split, Multi-Way-Split, Direct
o Thompson Sampling addressing the exploration-exploitation dilemma
o Ensemble Method dealing with noisy measured data

- /\ Thompson Sampl'ng> @

Per Log Execution Time FOI" Ea Ch
_ Sampled
J B

Log
o /\ < Update Beta Distributions

LEARNING

- Learnto choosestrategyon thefly. No prior statistics needed

- Multi-Armed Bandit (MAB)
o 3 arms: 3-Way-Split, Multi-Way-Split, Direct
o Thompson Sampling addressing the exploration-exploitation dilemma
o Ensemble Method dealing with noisy measured data

—>0 —>0

! || (10 sub-samples) | |

|

Majority Vote

=)
B

[
5

&
5]

DESIGN CONSIDERATIONS
Extensibility & Simplicity

- Implement BLARE as a layer on top, callingunderlying regex engine
Fasy to adopt, benefit from advancement of underlying engine

- Easily extended by adding arm(s)
- Small codebase (<1000 LOC) aids explainability
Minimize Learning Overhead

- Sincelearningis an overhead (proportional in the number of strategies), we
deliberately keep the number of modes in BLARE to be small.

- Early stoppingin MAB
- Thresholdingnumber of log fed to learner
Prefix and Suffix Sizes

- Since selectivity is most important, and itis not directly connectedto the length of
the literal, we do not discard short prefix/suffix

EXPERIMENTAL EVALUATION

Experiment Setup

- We use 4 SOTA regex libraries: RE2, PCREZ2, Boost Regex, and ICU Regex.

- All experimentson a machine runningIntel Xeon@2.8GHz, 256 GB RAM.

- Samplesize for learningis max {0.001% of the log, 200 lines}

Query Result Reporting

- Regex matchingis performed 10 times and we record the trimmed mean.
- We store the extracted content of the first match result in a local variable.

Workloads
- 132 regexes used for SQL Server log analysis over T00M+ log lines

- 18 regexes used for log analysis over 890M+ loglines sourced from Kusto

- Open-source datasets ontraffic accidentin US with 2.8M+ log linesand 4 relevant
regex

EXPERIMENTAL EVALUATION
- OVERALL PERFORMANCE

- Speedup obtained from BLARE w.r.t. running the workload on the underlying
engine

SQL Server Azure Data Explorer US-Accident

Google RE2 3.7X 3.3X 1.6X
PCRE2 3.2X 3.1x 168.3x
|CU Regex 1.6x - 61.7x
Boost Regex 7.9x 4.9x 3.4x

- Nearlyevery query experienced a performance improvementacross all the
engines

- For queriesthat did not, the gap to the best strategy was < 2%

EXPERIMENTAL EVALUATION
- LEARNING OVERHEAD

- Mean % of time spentin learningin BLARE

SQL Server Azure Data Explorer US-Accident
BLARE-RE2 5.1% 6.7% 16.5%
BLARE-PCRE2 9.1% -- 23.8%
BLARE-ICU Regex - 8.1% 28.1%
BLARE-Boost Regex 10.7% 6.1% 27.4%

- Note: US-Accidentis consistently higher because the log size is small, lower
threshold number of logs for learningtakes a larger proportion compared to other
workloads

- The cost of learningis justified by the overall gains made by BLARE

EXPERIMENTAL EVALUATION
- SPLITTING STRATEGIES

- Overall performance and distribution of per-regex running time for BLARE vs.
3-Way-Splitvs. Multi-Way-Split

- Using Google-RE2 on SQL Server

v :
O baseline
£ 1000

—

o 750

=

E 500

-]

X 250

©

o) 0

= REZ2 3-Way Multi-Way BLARE

Split Split
Method

EXPERIMENTAL EVALUATION
- SPLITTING STRATEGIES

- Overall performance and distribution of per-regex running time for BLARE vs.
3-Way-Splitvs. Multi-Way-Split

- Using Google-RE2 on SQL Server

RE2 HE -
- 3-Way
o Split i - ¢
=
O Multi-Way I
= Split
BLARE — .
2 4 6 8 10 20 40 60 80 100 200 400 600

Per Regex Running Time (s) in Log Scale

EXPERIMENTAL EVALUATION
- OTHER QUERIES

. Overall performance in terms of workload running time in seconds for 3 types
of queries.

- Using Google-RE2 on SQL Server

Running Time (s)
FirstMatch CountAllMatches LongestMatch
Google RE2 1105.7 1148.7 1128.5
BLARE - RE2 301.0 299.8 306.1
Improvement 3.67X 3.83X% 3.68X

Total Running Time (s)

EXPERIMENTAL EVALUATION

- EXTENSIBILITY

baseline

RE2 Reversed 3-Way Multi-Way BLARE
3-Way Split Split
Split

Method

- Add an additional Reversed 3-Way-Split

arm

o Instead of doing string containment checks
left to right, we can also add another
strategy that does right to left

- Overall performance and distribution of

per-regexrunning time for BLARE vs. 3-
Way-Splitvs. Multi-Way-Splitvs. Reversed
3-Way-Split

- Using Google-RE2 on SqlServer

EXPERIMENTAL EVALUATION
- EXTENSIBILITY

- Add an additional Reversed 3-Way-Splitarm

o Instead of doing string containment checks left to right, we can also add another
strategy that does right to left

- Overall performance and distribution of per-regex running time for BLARE vs.
3-Way-Splitvs. Multi-Way-Splitvs. Reversed 3-Way-Split

- Using Google-RE2 on SQL Server

RE2 Hp= - °
o S| D
.8 3-Way Split
% 3-Way Split —— - -
= .
Multi-Way ,
Split Ll ’
BLARE ® ® @ od¢ - @ o o .
06 08 1 2 3 4 5 6 789 10 20 30 40 50 60

Per Regex Running Time (s) in Log Scale

CONCLUSION

- We presented BLARE, a framework for

faster regex evaluation for large volume
log analysis.

- BLARE is engine-agnostic, does not make

any assumptions on the hardware,
statistics, etc.

- Experimental evaluation demonstrates

speedupsrangingfrom 1.6x to 168x over
real-world datasets and workloads.

. Code: github.com/mush-zhang/Blare

- Futurework:

o Incorporateindexing, light-weight statistics
collection, add more evaluation operators
and build a regex query optimizer.

https://github.com/mush-zhang/Blare

SUMMARY

BLARE ARCHITECTURE

o

(R.1) BLARE is engine-

Regexr Logl Out;)ut] r(L) agnostic
l(samv'e) 1 J
@ mode '
Splitter [—"=— q Learner (a) _)split-Matcher
regex splitsj |
]
BLARE gt
® ® -
(R.3) BLARE introduces

Underlying Regex Engine

no large regressions for
any specific query in the

workload

BLARE PROPERTIES

@@

(R.2) BLARE is extensible with
no long-term dependency on
specialized hardware or
software.

X

(R.4) BLARE requires no prior
statistics or catalogs about the

workloads

	Slide 1: BLARE:EXPLOITING STRUCTURE IN REGULAR EXPRESSION QUERIES
	Slide 2: Introduction
	Slide 3: Introduction
	Slide 4: Prior Works
	Slide 5: Regex eval BasiCs
	Slide 6: Regex characteristics
	Slide 7: Insight
	Slide 9: BLARE: Our Contributions A framework for regex evaluation
	Slide 10: Regex Decomposition
	Slide 11: What Splitting Strategy is Best?
	Slide 12: What Splitting Strategy is Best?
	Slide 13: BLARE Architecture
	Slide 14: Learning
	Slide 15: Learning
	Slide 16: Design Considerations
	Slide 17: Experimental Evaluation
	Slide 18: Experimental Evaluation - Overall performance
	Slide 19: EXPERIMENTAL EVALUATION - Learning Overhead
	Slide 20: EXPERIMENTAL EVALUATION - Splitting Strategies
	Slide 21: EXPERIMENTAL EVALUATION - Splitting Strategies
	Slide 22: EXPERIMENTAL EVALUATION - Other queries
	Slide 23: EXPERIMENTAL EVALUATION - extensibility
	Slide 24: EXPERIMENTAL EVALUATION - extensibility
	Slide 25: Conclusion
	Slide 26: Summary

